Abstract
This article consists of two sections. In the first one, the concepts of spanning and cospanning classes of modules, both hereditarily and cohereditarily, are explained, and some closure properties of the class of modules hereditarily cospanned by a conatural class are established, which amount to its being a hereditary torsion class. This gives a function from R-conat to R-tors and it is proven that its being a lattice isomorphism is part of a characterization of bilaterally perfect rings. The second section begins considering a description of pseudocomplements in certain lattices of module classes. The idea is generalized to define an inclusion-reversing operation on the collection of classes of modules. Restricted to R-nat, it is shown to be a function onto R-tors, and its being an anti-isomorphism is equivalent to R being left semiartinian. Lastly, another characterization of R being left semiartinian is given, in terms solely of R-tors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.