Abstract
Abstract We investigate quadrature rules with Laplace end corrections that depend on a parameter β. Specific values of β yield sixth order rules. We apply our results to approximating the sum of slowly converging series s = Σi=1∞ f(i + 1/2) where f ∈ C 6 with its sixth derivative of constant sign on [m, ∞) and ∫ m∞ f(x)dx is known for m ∈ ℕ. Several examples show the efficiency of this method. This paper continues the results from [Solak W., Szydełko Z., Quadrature rules with Gregory-Laplace end corrections, J. Comput. Appl. Math., 1991, 36(2), 251–253].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.