Abstract

The hyper-Kloosterman code was first defined as a trace code by Chinen-Hiramatsu [1]. In this article, two basic parameters of it, the minimum distance and the dimension are estimated. Analysis of the dimension shows that it is one of few examples of trace codes, of which the dimensions do not reduce when taking the trace, and are determined explicitly. It is also shown that the hyper-Kloosterman code can be realized as a quasi-cyclic code. It implies a method of explicit construction of quasi-cyclic codes of a new type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.