Abstract

In [12], the authors give an explicit construction of the T0−ordered reflection of an ordered topological space (X, τ,≤) . All ordered topological spaces such that whose T0−ordered reflections are T1−ordered spaces are characterized. In this paper, some properties of the T0−ordered reflection of a given ordered topological space (X, τ,≤) are studies. The class of morphisms in ORDTOP orthogonal to all T0−ordered topological space is characterized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.