Abstract

The theoretical concepts of graphs are highly utilized by computer science applications, social sciences, and medical sciences, especially in computer science for applications such as data mining, image segmentation, clustering, image capturing, and networking. Fuzzy graphs, bipolar fuzzy graphs and the recently developed m-polar fuzzy graphs are growing research topics because they are generalizations of graphs (crisp). In this paper, three new operations, i.e., direct product, semi-strong product and strong product, are defined on m-polar fuzzy graphs. It is proved that any of the products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient conditions are established for each to be strong, and it is proved that the strong product of two complete m-polar fuzzy graphs is complete. If any of the products of two m-polar fuzzy graphs G1 and G2 are strong, then at least G1 or G2 must be strong. Moreover, the density of an m-polar fuzzy graph is defined, the notion of balanced m-polar fuzzy graph is studied, and necessary and sufficient conditions for the preceding products of two m-polar fuzzy balanced graphs to be balanced are established. Finally, the concept of product m-polar fuzzy graph is introduced, and it is shown that every product m-polar fuzzy graph is an m-polar fuzzy graph. Some operations, like union, direct product, and ring sum are defined to construct new product m-polar fuzzy graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.