Abstract
Molodtsov introduced the theory of soft sets, which can be seen as a new mathematical approach to vagueness. In this paper, we first point out that several assertions (Proposition 2.3 (iv)–(vi), Proposition 2.4 and Proposition 2.6 (iii), (iv)) in a previous paper by Maji et al. [P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555–562] are not true in general, by counterexamples. Furthermore, based on the analysis of several operations on soft sets introduced in the same paper, we give some new notions such as the restricted intersection, the restricted union, the restricted difference and the extended intersection of two soft sets. Moreover, we improve the notion of complement of a soft set, and prove that certain De Morgan’s laws hold in soft set theory with respect to these new definitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.