Abstract
A specific mortality rate process governed by the non-homogeneous Poisson process of point events is considered and its properties are studied. This process can describe the damage accumulation in organisms experiencing external shocks and define its survival characteristics. It is shown that, although the sample paths of the unconditional mortality rate process are monotonically increasing, the population mortality rate can decrease with age and, under certain assumptions, even tend to zero. The corresponding analysis is the main objective of this paper and it is performed using the derived conditional distributions of relevant random parameters. Several meaningful examples are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.