Abstract
In the present paper we investigate minimal supervarieties of given superexponent over fields of characteristic zero. We show that any minimal supervariety of finite basic rank is generated by one of the minimal superalgebras, introduced by Giambruno and Zaicev in 2003. Furthermore it is proved that any minimal superalgebra, whose graded simple components of the semisimple part are simple, generates a minimal supervariety. Finally we state that the same conclusion holds when the semisimple part of a minimal superalgebra has exactly two arbitrary graded simple components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.