Abstract
In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field F with coefficients in a domain, which admits a finite monomorphism from a power series ring over a p-adic integer ring, the set of places of F where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.