Abstract
Chaos synchronization is a topic of great interest, due to its observation in a huge variety of phenomena of different nature. We study synchronization of two chaotic oscillators in a Master- Slave configuration. The two dynamic systems are coupled via a directed feedback that randomly switches among a finite set of given constant function at a prescribed time rate. And we use Lyapunov stability theory. This paper discussed the using of lag synchronization approach, and provided the equilibrium solutions of a new class of higher order parabolic partial differential equations to be applicable for Lorenz chaotic system in order to minimize the dynamical error of large Lorenz chaotic system
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Theoretical and Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.