Abstract

We obtain a formula for the expansion of an arbitrary function in a series in the eigenfunctions of the Sturm–Liouville boundary-value problem for the differential equation of cone functions. On the basis of this result, we derive a series of integral transformations (including well-known ones) and inversion formulas for them. We apply these formulas to the solution of initial boundary-value problems in the theory of heat conduction for circular hollow cones truncated by spherical surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.