Abstract

Combining known results it follows that deciding whether a given graph G of size m has a unique perfect matching as well as finding that matching if it exists, can be done in time O(m) if G is either a cograph, or a split graph, or a claw-free graph. We provide structural insights concerning the graphs with a unique perfect matching that belong to these three graph classes, which lead to simple linear time algorithms for the unique perfect matching problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.