Abstract
In the usual aim of discrete tomography, the reconstruction of an unknown discrete set is considered, by means of projection data collected along a set U of discrete directions. Possible ambiguous reconstructions can arise if and only if switching components occur, namely, if and only if non-empty images exist having null projections along all the directions in U. In order to lower the number of allowed reconstructions, one tries to incorporate possible extra geometric constraints in the tomographic problem, such as the request for connectedness, or some reconstruction satisfying special convexity constraints. In particular, the class \(\mathbb {P}\) of horizontally and vertically convex connected sets (briefly, hv-convex polyominoes) has been largely considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.