Abstract

On the real line we consider singular integral operators with a linear Carleman shift and complex conjugation, acting in \( \tilde{L}_2(\mathbb{R})\), the real space of all Lebesgue measurable complex value functions on ℝ with p = 2 power. We show that the original singular integral operator with shift and conjugation is, after extension, equivalent to a singular integral operator without shift and with a 4 × 4 matrix coefficients. By exploiting the properties of the factorization of the symbol of this last operator, it is possible to describe the solution of a generalized Riemann boundary value problem with a Carleman shift.KeywordsGeneralized Riemann boundary value problemsingular integral operatorsCarleman shiftfactorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.