Abstract
Some variations of \pi -regular and nil clean rings were recently introduced in the works of the first author: “A generalization of \pi -regular rings, Turkish J. Math. 43 (2), 702–711 (2019)”, “A symmetrization in \pi -regular rings, Trans. A. Razmadze Math. Inst. 174 (3), 271–275 (2020)”, “A symmetric generalization of \pi -regular rings, Ric. Mat. 73 (1), 179–190 (2024)”. In this paper, we examine the structure and relationships between these classes of rings. Specifically, we prove that (m, n)-regularly nil clean rings are left-right symmetric and also show that the inclusions (D- regularly nil clean) (regularly nil clean) ((m, n)-regularly nil clean) hold, as well as we answer Questions 1, 2 and 3 posed in the third of the above-listed works. Moreover, we also consider other similar questions concerning the symmetric properties of certain classes of rings. For example, it is proven that centrally Utumi rings are always strongly \pi -regular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.