Abstract

In the present paper, several types of efficiency conditions are established for vector optimization problems with cone constraints affected by uncertainty, but with no information of stochastic nature about the uncertain data. Following a robust optimization approach, data uncertainty is faced by handling set-valued inclusion problems. The employment of recent advances about error bounds and tangential approximations of the solution set to the latter enables one to achieve necessary conditions for weak efficiency via a penalization method as well as via the modern revisitation of the Euler–Lagrange method, with or without generalized convexity assumptions. The presented conditions are formulated in terms of various nonsmooth analysis constructions, expressing first-order approximations of mappings and sets, while the metric increase property plays the role of a constraint qualification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.