Abstract
We present new algorithms for computing orders of elements, discrete logarithms, and structures of finite abelian groups. We estimate the computational complexity and storage requirements, and we explicitly determine the O O -constants and Ω \Omega -constants. We implemented the algorithms for class groups of imaginary quadratic orders and present a selection of our experimental results. Our algorithms are based on a modification of Shanks’ baby-step giant-step strategy, and have the advantage that their computational complexity and storage requirements are relative to the actual order, discrete logarithm, or size of the group, rather than relative to an upper bound on the group order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.