Abstract

We consider a class of multimaps which are the composition of a superposition multioperator ${\mathcal P}_F$ generated by a nonconvex-valued almost lower semicontinuous nonlinearity $F$ and an abstract solution operator $S$. We prove that under some suitable conditions such multimaps are condensing with respect to a special vector-valued measure of noncompactness and construct a topological degree theory for this class of multimaps yielding some fixed point principles. It is shown how abstract results can be applied to semilinear inclusions, inclusions with $m$-accretive operators and time-dependent subdifferentials, nonlinear evolution inclusions and integral inclusions in Banach spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.