Abstract

In this article we give some characterizations of Poisson processes, the model which we consider is inspired by Kimeldorf and Thall (1983) and we generalize the results of Chandramohan and Liang (1985). More precisely, we consider an arbitrarily delayed renewal process, at each arrival time we allow the number of arrivals to be i.i.d. random variables, also the mass of each unit atom can be split into k new atoms with the ith new atom assigned to the process Di, i = 1, ···, k. We shall show that the existence of a pair of uncorrelated processes Di, Dj, i ≠ j, implies the renewal process is Poisson. Some other related characterization results are also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.