Abstract

In this paper, we study the appearance, evolution and neighbourhood of two attractors of a dynamical system defined by a quadratic polynomial map T: R2 → R2. The first is a Cantor-type attractor located on an invariant straight line. Thus, it suffices to study the restriction of the map T to this invariant line. The second is a closed curves cycle of period 2. We show, by a numerical approach, that when a parameter of the system varies, the evolution of the orbits in the region close to this second attractor is dependent on the evolution of the stable and unstable sets (homoclinic tangency) of a saddle cycle of period 2 located in this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.