Abstract
This article investigates some important aspects of material behavior responsible for acoustic nonlinearity. Even though the discussion is based on a specific constitutive model used for studying higher harmonic generation, the conclusions drawn are valid in a general context. Three aspects of material behavior, namely tension–compression asymmetry, shear-normal coupling and deformation induced anisotropy are presented. The role of each in the generation of higher harmonics along with the plausible microstructural features that contribute to such behavior is discussed. First and foremost, tension–compression asymmetry is identified to cause second (even) harmonic generation in materials. Then shear-normal coupling is identified to cause generation of secondary waves of different polarity than the primary waves. In addition, deformation induced anisotropy due to the presence of residual stress/strain and its contribution to acoustic nonlinearity is qualitatively discussed. Meso-scale modeling aspects to accurately predict the effect of microstructure on higher harmonic generation are emphasized throughout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.