Abstract

In 1918 Joseph Lense and Hans Thirring, discovered the gravitomagnetic effect when studied solutions to the Einstein field equations using the weak field and slow motion approximation of rotating systems. They noted that when a body falls towards a massive object in rotation it feels a force perpendicular to its movement. The equations that they obtained were similar to Maxwell’s equations of electromagnetism, now known as Maxwell’s equations for gravitomagnetism. Some authors affirm that the gravitomagnetic effect can cause precession then in this paper we calculate the precession that gravitomagnetic effect cause in Mercury’s perihelion advance. To make this we calculate the field between dipoles to measure the influence that the Sun has on Mercury, taking into account the gravitomagnetic field that the Sun and Mercury produces when they rotate around themselves. In addition, we calculate the ratio of the dipole force (of all solar system planet’s) and the Newton’s gravitational force to see how much is smaller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.