Abstract
A thin annular plate is subjected to a uniform tensile field at its inner edge which leads to compressive circumferential stresses. When the intensity of the applied field is strong enough, elastic buckling occurs circumferentially, leading to a wrinkling pattern. Using a linear non-homogeneous pre-bifurcation state, the linearised eigenvalue problem describing this instability is cast as a fourth-order linear differential equation with variable coefficients. This problem is investigated numerically and it is shown that the simple application of the Galerkin technique reported in the literature leads to gross errors in the corresponding approximations. Several novel mathematical features of the eigenvalue problem are included as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.