Abstract

We use the exterior product of double forms to free from coordinates celebrated classical results of linear algebra about matrices and bilinear forms namely Cayley-Hamilton theorem, Laplace expansion of the determinant, Newton identities and Jacobi’s formula for the determinant. This coordinate free formalism is then used to easily generalize the previous results to higher multilinear forms namely to double forms. In particular, we show that the Cayley-Hamilton theorem once applied to the second fundamental form of a hypersurface is equivalent to a linearized version of the Gauss-Bonnet theorem, and once its generalization is applied to the Riemann curvature tensor (seen as a $(2,2)$ double form) is an infinitisimal version of the general Gauss-Bonnet-Chern theorem. In addition to that, we show that the general Cayley-Hamilton theorems generate several universal curvature identities. The generalization of the classical Laplace expansion of the determinant to double forms is shown to lead to new general Avez type formulas for all Gauss-Bonnet curvatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.