Abstract

Sombor index of a graph G=(V(G),E(G)) is provided by the expression ∑uv∈E(G)du2+dv2, where dx is the degree of the vertex x∈V(G). The energy of a graph is the quantity given by the total of the absolute values of its adjacency matrix’s eigenvalues. In this article, we improve the relation between the Sombor index and graph energy and derive the relation between them for unicyclic, bicyclic and tricyclic graphs, trees, triangular chain, square cactus chain and hexagonal cactus chain graphs. At last, we find the bounds of graph energy for zigzag and linear hexagonal chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.