Abstract

Iterative aggregation/disaggregation (IAD) methods are powerful tools for solving Markov chain models whose transition probability matrices are nearly completely decomposable (NCD). Such models arise frequently during the performance and reliability analysis of computer and telecommunication systems. IAD methods require the solution of a stochastic coupling matrix whose elements denote transition probabilities among blocks. The coupling matrices are often large and in NCD models necessarily have diagonal elements close to one and small off-diagonal elements. This makes their solution by either iterative or direct methods rather difficult. We propose a modification of the coupling matrix that allows us to accurate and efficiently compute its stationary probability vector. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.