Abstract

A system of algebraic equations over a finite field is called sparse if each equation depends on a small number of variables. In this paper new deterministic algorithms for solving such equations are presented. The mathematical expectation of their running time is estimated. These estimates are at present the best theoretical bounds on the complexity of solving average instances of the above problem. In characteristic 2 the estimates are significantly lower the worst case bounds provided by SAT solvers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.