Abstract
This work deals with the Orlicz space and the Hardy-Orlicz classes generated by this space, which consist of analytic functions inside and outside the unit disk. The homogeneous Riemann boundary value problems with piecewise continuous coefficients are considered in these classes. New characteristic of Orlicz space is defined which depends on whether the power function belongs to this space or not. Relationship between this characteristic and Boyd indices of Orlicz space is established. The concept of canonical solution of homogeneous problem is defined, which depends on the argument of the coefficient. In terms of the above characteristic, a condition on the jumps of the argument is found which is sufficient for solvability of these problems, and, in case of solvability, a general solution is constructed. It is established the basicity of the parts of exponential system in Hardy-Orlicz classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.