Abstract

We consider an isolated system of N immiscible fluids, each following a stiffened-gas equation of state. We consider the problem of calculating equilibrium states from the conserved fluid-mechanical properties, i.e., the partial densities and internal energies. We consider two cases; in each case mechanical equilibrium is assumed, but the fluids may or may not be in thermal equilibrium. For both cases, we address the issues of existence, uniqueness, and physical validity of equilibrium solutions. We derive necessary and sufficient conditions for physically valid solutions to exist, and prove that such solutions are unique. We show that for both cases, physically valid solutions can be expressed as the root of a monotonic function in one variable. We then formulate efficient algorithms which unconditionally guarantee global and quadratic convergence toward the physically valid solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.