Abstract

We investigate real solutions of a C-integrable non-evolutionary partial differential equation in the form of a scalar conservation law where the flux density depends both on the density and on its first derivatives with respect to the local variables. By performing a similarity reduction dictated by one of its local symmetry generators, a nonlinear ordinary differential equation arises that is connected to the Painlevé III equation. Exact solutions are secured and described provided a constraint holds among the coefficients of the original equation. In the most general case, we pinpoint the generation of additional singularities by numerical integration. Then, we discuss the evolution of given initial profiles. Finally, we mention aspects concerning rational solutions with a finite number of poles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.