Abstract

With the help of the Kronecker map, a complete, general and explicit solution to the Yakubovich matrix equation V − A V F = B W , with F in an arbitrary form, is proposed. The solution is neatly expressed by the controllability matrix of the matrix pair ( A , B ) , a symmetric operator matrix and an observability matrix. Some equivalent forms of this solution are also presented. Based on these results, explicit solutions to the so-called Kalman–Yakubovich equation and Stein equation are also established. In addition, based on the proposed solution of the Yakubovich matrix equation, a complete, general and explicit solution to the so-called Yakubovich-conjugate matrix is also established by means of real representation. Several equivalent forms are also provided. One of these solutions is neatly expressed by two controllability matrices, two observability matrices and a symmetric operator matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.