Abstract
The generalized modified Korteweg–de Vries equation of the fifth order with dissipation is considered. The Painlevé test is applied for studying integrability of this equation. It is shown that the generalized modified Korteweg–de Vries equation of the fifth order does not pass the Painlevé test in the general case but has the expansion of the solution in the Laurent series. As a consequence the equation can have some exact solutions at additional conditions on the parameters of the equation. We present the effective modification of methods for finding of solitary wave and elliptic solutions of nonlinear differential equations. Solitary wave and elliptic solutions of the generalized modified Korteweg–de Vries equation of the fifth order are found by means of expansion for solution in the Laurent series. These solutions can be used for description of nonlinear waves in the medium with dissipation, dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.