Abstract
The paper numerically analyzes the Aharonov–Bohm effect of an infinitely thin magnetic flux for its influence on a two- or three-dimensional (3d) solutions of Coulomb system in momentum and coordinate spaces. For any definitive eigenstate, it is shown that the flux shifts the position of the most probable radius (MPR) of a probability distribution inward or outward in momentum or coordinate spaces, respectively. Moreover, the probability density of the shifted MPR is amplified in the momentum space, while reduced in the coordinate space. Since the Coulomb force among charged particles dominate the structure of matter, shifting of the MPR controlling by the flux effect may be beneficial to the construction of nanostructure by manipulating the atomic and molecular bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.