Abstract

The short pulse (SP) equation is an integrable equation. Multi-component generalizations of the SP equation are important for describing the polarization or anisotropic effects in optical fibers. An integrable semi-discretization of multi-component SP equation via Lax pair and Darboux transformation (DT) has been presented. We derive a Lax pair representation for the multi-component semi-discrete short pulse (sdSP) equation in the form of a block matrices by generalizing the 2 × 2 Lax pair matrices to the case of . A DT is studied for the multi-component sdSP equation and is used to compute soliton solutions of the system. Further, by expanding quasideterminants, we compute cuspon-soliton, smooth-soliton and loop-soliton solutions of the complex sdSP equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.