Abstract
For massive and conformal quantum field theories in 1+1 dimensions with a global gauge group we consider soliton automorphisms, viz. automorphisms of the quasilocal algebra which act like two different global symmetry transformations on the left and right spacelike complements of a bounded region. We give a unified treatment by providing a necessary and sufficient condition for the existence and Poincaré covariance of soliton automorphisms which is applicable to a large class of theories. In particular, our construction applies to the QFT models with the local Fock property — in which case the latter property is the only input from constructive QFT we need — and to holomorphic conformal field theories. In conformal QFT soliton representations appear as twisted sectors, and in a subsequent paper our results will be used to give a rigorous analysis of the superselection structure of orbifolds of holomorphic theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.