Abstract

An algorithm for smoothing results of three-dimensional (3-D) Monte Carlo ion implantation simulations and translating them from the grid used for the Monte Carlo simulation to an arbitrary unstructured 3-D grid is presented. This algorithm is important for joining various process simulation steps, where data have to be smoothed or transferred from one grid to another. Furthermore, it is important for integrating the ion implantation simulator into a process flow. One reason for using different grids is that for certain Monte Carlo simulation methods, using orthogrids is mandatory because of performance reasons. The algorithm presented sweeps a small rectangular grid over the points of the new tetrahedral grid and uses approximation by generalized Bernstein polynomials. This approach was put on a mathematically sound basis by proving several properties of these polynomials. It does not suffer from the adverse effects of least squares fits of polynomials of fixed degree as known from the response surface method. The most important properties of Bernstein polynomials generalized to cuboid domains are presented, including uniform convergence, an asymptotic formula, and the variation diminishing property. The smoothing algorithm which works very fast is described and, in order to show its applicability, the resulting values of a 3-D real world implantation example are given and compared with those of a least squares fit of a multivariate polynomial of degree two, which yielded unusable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.