Abstract

Let {x(1)≤···≤x(n)} denote the increasing arrangement of the components of a vector x=(x1, …, xn). A vector x∈Rn majorizes another vector y (written $\bf{x} \mathop{\succeq}\limits^{m} \bf{y}$) if $\sum_{i=1}^{j} x_{(i)} \le \sum_{i=1}^{j}y_{(i)}$ for j = 1, …, n−1 and $\sum_{i=1}^{n}x_{(i)} = \sum_{i=1}^{n}y_{(i)}$. A vector x∈R+n majorizes reciprocally another vector y∈R+n (written $\bf{x} \mathop{\succeq}\limits^{rm} \bf{y}$) if $\sum_{i=1}^{j}(1/x_{(i)}) \ge \sum_{i=1}^{j}(1/y_{(i)})$ for j = 1, …, n. Let $X_{\lambda_{i},\alpha},\,i=1,\ldots,n$, be n independent random variables such that $X_{\lambda_{i},\alpha}$ is a gamma random variable with shape parameter α≥1 and scale parameter λi, i = 1, …, n. We show that if $\lambda \mathop{\succeq}\limits^{rm} \lambda^{\ast}$, then $\sum_{i=1}^{n} X_{\lambda_{i},\alpha}$ is greater than $\sum_{i=1}^{n} X_{\lambda^{\ast}_{i},\alpha}$ according to right spread order as well as mean residual life order. We also prove that if $(1/ \lambda_{1}, \ldots ,1/ \lambda_{n}) \mathop{\succeq}\limits^{m} \succeq (1/ \lambda_{1}^{\ast}, \ldots , 1/ \lambda_{n}^{\ast})$, then $\sum_{i=1}^{n} X_{\lambda_{i}, \alpha}$ is greater than $\sum_{i=1}^{n} X_{\lambda^{\ast}_{i},\alpha}$ according to new better than used in expectation order as well as Lorenze order. These results mainly generalize the recent results of Kochar and Xu [7] and Zhao and Balakrishnan [14] from convolutions of independent exponential random variables to convolutions of independent gamma random variables with common shape parameters greater than or equal to 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call