Abstract

OF DISSERTATION On Skew-Constacyclic Codes Cyclic codes are a well-known class of linear block codes with efficient decoding algorithms. In recent years they have been generalized to skew-constacyclic codes; such a generalization has previously been shown to be useful. We begin with a study of skew-polynomial rings so that we may examine these codes algebraically as quotient modules of non-commutative skew-polynomial rings. We introduce a skew-generalized circulant matrix to aid in examining skew-constacyclic codes, and we use it to recover a well-known result on the duals of skew-constacyclic codes from Boucher/Ulmer in 2011. We also motivate and define a notion of idempotent elements in these quotient modules. We are particularly concerned with the existence and uniqueness of idempotents that generate a given submodule; we generalize relevant results from previous work on skew-constacyclic codes by Gao/Shen/Fu in 2013 and well-known results from the classical case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.