Abstract
AbstractAn E–W matrix M is a ( − 1, 1)‐matrix of order , where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if is skew‐symmetric where I is the identity matrix. In this paper, we draw a parallel between skew E–W matrices and skew Hadamard matrices concerning a question about the maximal determinant. As a consequence, a problem posted on Cameron's website [7] has been partially solved. Finally, codes constructed from skew E–W matrices are presented. A necessary and sufficient condition for these codes to be self‐dual is given, and examples are provided for lengths up to 52.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.