Abstract
Loop operators of a class S theory arise from networks on the corresponding Riemann surface, and their operator product expansions are given in terms of the skein relations, that we describe in detail in the case of class S theories of type A. As two applications, we explicitly determine networks corresponding to dyonic loops of $N=4$ $SU(3)$ super Yang-Mills, and compute the superconformal index of a nontrivial network operator of the $T_3$ theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.