Abstract
This paper reports the results of the treatment of a yarn dyeing effluent using an integrated biological–chemical oxidation process. In particular, the biological unit was based on a sequencing batch biofilter granular sludge reactor (SBBGR), while the chemical treatment consisted of an ozonation step. Biological treatment alone was first performed as a reference for comparison. While biological treatment did not produce an effluent for direct discharge, the integrated process assured good treatment results, with satisfactory removal of chemical oxygen demand (up to 89.8 %), total nitrogen (up to 88.2 %), surfactants (up to 90.7 %) and colour (up to 99 %), with an ozone dose of 110 mg of ozone per litre of wastewater. Biomass characterization by fluorescence in situ hybridization has revealed that filamentous bacteria represented about 20 % of biomass (coherently with high sludge volume index values); thanks to its special design, SBBGR guaranteed, however, stable treatment performances and low effluent suspended solids concentrations, while conventional activated sludge systems suffer from sludge bulking and even treatment failure in such a condition. Furthermore, biomass characterization has evidenced the presence of a shortcut nitrification–denitrification process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.