Abstract

Even though technological advances have occurred during recent decades today’s nutrient loading from Swedish on-site sewage systems (OSSs) is much higher than in the 1940s, despite a decreased rural population and the existence of potentially far better technologies than the existing inadequate installations. The objective of this paper is first, to explain this situation as the result of co-evolution of technology and institutions, which has resulted in a very stable conservation. Second, to properly understand how such stable configurations may change, the paper investigates how a power-distributional theory of incremental institutional change might complement the previous analysis and open up the thinking about how seemingly stable configurations may change endogenously. The analysis reveals how shifts in the distribution of power, i.e., public and private actors’ resources and tools to use in interaction with other actors, have influenced the direction of technological and institutional development. We conclude that the sequencing of events has been important; the series of choices made foremost between the 1950s and 1990s caused both institutional and technical lock-in effects that have been increasingly difficult to break out from. Despite parallel and later incremental developments, improvement in the environmental outcome is not yet seen on the large scale.

Highlights

  • The large-scale application of new technologies for the provision of basic services, such as transportation and sanitation, has been made with the best intentions and enabled industrialization, urbanization, a greater human population and increased welfare

  • As we suggest throughout our case study, actors may derive their power because of their position vis-à-vis an institution in one context and they can utilize this power to influence the direction of change of a socio-technical system and institutional change in another context

  • Acknowledging that nutrient loads from on-site sewage systems (OSSs) are relatively high in industrialized countries, this paper analyzes the historical development of OSSs in Sweden

Read more

Summary

Introduction

The large-scale application of new technologies for the provision of basic services, such as transportation and sanitation, has been made with the best intentions and enabled industrialization, urbanization, a greater human population and increased welfare. Over time, environmental impacts have become huge ―unintended consequences‖ and a driving force for further development This is certainly the case for systems providing clean water and treatment of sewage in urban and rural settings. The expansion of piped water and sewage first occurred in cities and, later from the mid-20th century onwards, in the scattered rural settlements of Sweden [1]. Their benefits included improved hygiene in homes but they have, over time, been increasingly recognized as a cause of eutrophication, due to their nutrient-rich effluents and their increasing loads relative to other contributing sources [2,3].

Objectives
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.