Abstract

In this review, we discuss a novel on-site remodeling function that is mediated by the H2A-ubiquitin binding protein ZRF1. ZRF1 facilitates the remodeling of multiprotein complexes at chromatin and lies at the heart of signaling processes that occur at DNA damage sites and during transcriptional activation. In nucleotide excision repair ZRF1 remodels E3 ubiquitin ligase complexes at the damage site. During embryonic stem cell differentiation, it contributes to retinoic acid-mediated gene activation by altering the subunit composition of the Mediator complex. We postulate that ZRF1 operates in conjunction with cellular remodeling machines and suggest that on-site remodeling might be a hallmark of many chromatin-associated signaling pathways. We discuss yet unexplored functions of ZRF1-mediated remodeling in replication and double strand break repair. In conclusion, we postulate that on-site remodeling of multiprotein complexes is essential for the timing of chromatin signaling processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.