Abstract

We calculate the average number of critical points N[over ¯] of the energy landscape of a many-body system with disordered two-body interactions and a weak on-site potential. We find that introducing a weak nonlinear on-site potential dramatically increases N[over ¯] to exponential in system size and give a complete picture of the organization of critical points. Our results extend solvable spin-glass models to physically more realistic models and are of relevance to glassy systems, nonlinear oscillator networks, and many-body interacting systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call