Abstract

Illicit-drug production, trafficking and seizures are on an all-time high. This consequently raises pressure on investigative authorities to provide rapid forensic results to assist law enforcement and legal processes in drug-related cases. Ideally, every police officer is equipped with a detector to reliably perform drug testing directly at the incident scene. Such a detector should preferably be small, portable, inexpensive and shock-resistant but should also provide sufficient selectivity to prevent erroneous identifications. This study explores the concept of on-site drugs-of-abuse detection using a 1.8 × 2.2 mm2 multipixel near-infrared (NIR) spectral sensor that potentially can be integrated into a smartphone. This integrated sensor, based on an InGaAs-on-silicon technology, exploits an array of resonant-cavity enhanced photodetectors without any moving parts. A 100% correct classification of 11 common illicit drugs, pharmaceuticals and adulterants was achieved by chemometric modelling of the response of 15 wavelength-specific pixels. The performance on actual forensic casework was investigated on 246 cocaine-suspected powders and 39 MDMA-suspected ecstasy tablets yielding an over 90% correct classification in both cases. These findings show that presumptive drug testing by miniaturized spectral sensors is a promising development ultimately paving the way for a fully integrated drug-sensor in mobile communication devices used by law enforcement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call