Abstract

Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities.

Highlights

  • The scientific community is in agreement that we are in the midst of the sixth great mass extinction [1]

  • The portable MinION device developed by Oxford Nanopore Technologies (ONT) (Oxford, UK) was selected as sequencing machine given its small dimensions, i.e. 10 x 2.2 x 3.2 cm, and the minimal requirement of power supply (USB connection)

  • In order to identify the most suitable protocols for a portable sequencing laboratory to be used in the context of a tropical forest, we evaluated: 1) the effect of storage temperature on the MinION reagents and flowcells, 2) the impact of tropical forest conditions on the sequencing performance 3) the impact of the protocol shortening on the sequencing performance 4) the suitability of MinION for DNA barcoding

Read more

Summary

Introduction

The scientific community is in agreement that we are in the midst of the sixth great mass extinction [1]. This has been attributed to the modification and destruction of natural habitats by humans, placing a wide range of organisms at risk [1,2,3]. The loss of biodiversity is global, the geographic patterns of species loss are non-random [4]. Many species in tropical countries are declining to the point of extinction.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.