Abstract

BackgroundSurface-enhanced Raman spectroscopy (SERS) has been extensively used in biomedical and food safety detection due to its advantages of label-free, in situ and fingerprint spectrum. However, it is challenging to develop an excellent SERS substrate that possesses all three of these characteristics including sensitivity, repeatability and stability. ResultsIn this work, a specific sodium alginate hydrogel flexible SERS substrate encapsulated gold-silver core-shell nanoparticles (Au@Ag NPs) was developed to address the aforementioned issue. The Au@Ag NPs with SERS “hot spot” structure were evenly dispersed in the hydrogel, which achieved the direct and high efficiency detection of the pesticide residues from complex sample matrix. Taking thiram as objective, this SERS substrates exhibit high sensitivity (detection limit of approximately 1 × 10−10 mol/L), excellent stability (maintain above 78.35 % of SERS activity after 7 weeks) and outstanding repeatability (RSD in one substrate as low as 3.56 %). Furthermore, the flexible hydrogel SERS substrates can be used to analyze a variety of small molecules in real samples (juices, vegetables and fruits), without the need for a laborious pretreatment process. SignificanceIn light of the aforementioned benefits, the functional flexible hydrogel SERS substrates present a reliable platform for the accurate and on-site measurement of chemical contaminants from complex samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.