Abstract

We classify singular fibres over general points of the discriminant locus of projective Lagrangian fibrations over 4-dimensional holomorphic symplectic manifolds. The singular fibre F is the following either one: F is isomorphic to the product of an elliptic curve and a Kodaira singular fibre up to finite unramified covering or F is a normal crossing variety consisting of several copies of a minimal elliptic ruled surface of which the dual graph is Dynkin diagram of type $A_n, \tilde{A_n}$ or $\tilde{D_n}$ . Moreover, we show all types of the above singular fibres actually occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.