Abstract
Let φ t be a topologically mixing Anosov flow on a 3-D compact manifold M. Every unstable fiber (horocycle) of such a flow is dense in M. Sinai proved in 1992 that the one-dimensional SBR measures on long segments of unstable fibers converge uniformly to the SBR measure of the flow. We establish an explicit bound on the rate of convergence in terms of integrals of Holder continuous functions on M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.