Abstract

A key strength of connectionist modelling is its ability to simulate both intact cognition and the behavioural effects of neural damage. We survey the literature, showing that models have been damaged in a variety of ways, e.g. by removing connections, by adding noise to connection weights, by scaling weights, by removing units and by adding noise to unit activations. While these different implementations of damage have often been assumed to be behaviourally equivalent, some theorists have made aetiological claims that rest on nonequivalence. They suggest that related deficits with different aetiologies might be accounted for by different forms of damage within a single model. We present two case studies that explore the effects of different forms of damage in two influential connectionist models, each of which has been applied to explain neuropsychological deficits. Our results indicate that the effect of simulated damage can indeed be sensitive to the way in which damage is implemented, particularly when the environment comprises subsets of items that differ in their statistical properties, but such effects are sensitive to relatively subtle aspects of the model’s training environment. We argue that, as a consequence, substantial methodological care is required if aetiological claims about simulated neural damage are to be justified, and conclude more generally that implementation assumptions, including those concerning simulated damage, must be fully explored when evaluating models of neurological deficits, both to avoid over-extending the explanatory power of specific implementations and to ensure that reported results are replicable.

Highlights

  • Following a surge of interest in the 1980s and 1990s, connectionism, in which behaviours of interest are simulated by networks of computationally simple units which pass activation to each other in parallel via weighted connections, has become a standard approach within cognitive modelling

  • We explore the effects of different types of damage with a second case study based on a second model within the broad family of distributed learning network models, namely the simple recurrent network (SRN) model of routine sequential behaviour and its disorders presented by Botvinick and Plaut (2004)

  • Regardless of the differences in the network’s behaviour following damage when trained with P1 versus P2, it is clear that removal of connection weights and addition of weight noise within the hub-and-spoke model can affect the naming of objects and the naming of artefacts differently, as can removal of hub units and scaling of connection weights

Read more

Summary

Introduction

Following a surge of interest in the 1980s and 1990s, connectionism, in which behaviours of interest are simulated by networks of computationally simple units which pass activation to each other in parallel via weighted connections, has become a standard approach within cognitive modelling. An important strength of the approach is that it can provide insights into how neuropsychological deficits (i.e. behavioural impairments following neural damage) might. A successful connectionist neuropsychological simulation can both provide support for the cognitive theory implemented within the simulation and strengthen our understanding of functional deficits underlying relevant behavioural impairments. In this way, connectionism appears to offer a level of abstraction that allows it to capture both cognitive theory and the effects of neural damage within that theory. A key strength of the connectionist approach is that it bridges levels

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.